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for Visual Localization and Mapping?



Visual Localization and Mapping

Finding where | am
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Visual Localization and Mapping

What is in the world and where
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Visual Localization and Mapping

Creating maps from observations

needs the sensor pose
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mapping localization
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needs a map

ASL, ETH Zurich



Why should we care?

Microsoft

Sevensense




3D Geometry for Mapping
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3D Geometry for Mapping
3D point cloud




3D Geometry for Localization

3D point cloud

qguery image
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Real-world challenges

» temporal
& changes

Google StreetView



Do we still need geometry
for Visual Localization and Mapping?



SfM in 2019

Deep Learning

Deep Learning

Image Matching Workshop

_ ' Deep Learning
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) More Deep Learning
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We now have end-to-end learning that works

2016, 2023 2025 >
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But what did we lose?
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From Geometry to Deep Learning?

accurate, scalable, interpretable
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3D geometry
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black box A
deep learning

3D map

camera PoOSeES

none of the abovel! limited to <<1k views
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From Geometry to Deep Learning?

r
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black box A
deep learning camera poses

Do we have to choose one?
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One step at a time

image matching pose estimation bundle adjustment

o

PixSfM [ICCV'21]
_calibration

PixLoc [CVPR21]

SuperGlue [CVPR20]

LightGlue [ICCV'23] [gg%@/’gj res




A simple recipe

1. Identity structural weaknesses in geometry
« unconstrained? unobservable? noisy inputs?

2. Think ML: what priors do we need? Inferred from what data?
3. What geometry shouldn't be learned? Camera models!

4. Bake it into an optimization problem with learned data terms

L earned priors as data terms
 Flexible constraints
 Predictive uncertainty
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Example: three-view overlap

unconstrained relative scales
e\

2 disjoint
reconstructions
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Example: three-view overlap
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Monocular surface priors
depth & normals
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Example: three-view overlap
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ETHziirich' Google’ g& Microsoft’

MP-StM
Monocular Surface Priors
for Robust Structure-from-Motion
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=
=

/ador Paul-Edouard Johannes
Pataki’ Sarlin? Schonberger's Pollefeys's

github.com/cvg/mpsfm



Common scenario
for non-expert users

‘estimated
vs ground-truth
camera poses



images

How it works

sparse or dense
correspondences

monocular
depth & normals

3D lifting refinement \

multi-view
triangulation

@
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~ b
depth-constrained
bundle adjustment

Qingle—view lifting depth refinement/
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Single-view lifting with depth

Complement regular multi-view 3D points
with single-view tracks from depth
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Bundle adjustment with priors

» Naive: constrain the depth of 3D points
« But: monocular depth is rarely accurate!
« Surface normals are easier to predict

vs GT depth . |

\\’

27



Depth refinement as normal integration

» Constrain 3D points that are on the same surface
* Optimize a dense depth map with NLS
« Estimate the depth discontinuity with IRLS

Bilateral Normal Integration, Cao et al.,, ECCV 2022
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Depth refinement as normal integration

Solution: alternate optimization
point-to-point constraints .
depth-constrained

break the Schur Complement bundle adjustment
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Joint optimization requires
calibrated uncertainties

Metric3Dv2 Depth Uncertainty Calibration
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Depth maps convergeto 4

triangulated points <« 4
v v

Depth Map Optimization During BA



Latest Image
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Symmetry detection with depth consistency
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MP-SfM (ours)




So... do we still need geometry?
YES!

« Two/multi-view models learn strong 3D priors

« But we already have this from off-the-shelf models

« Use geometry to glue them together!

« Open question: can we learn depth/normals end-to-end in STM?

» Grand vision: a self-tuning system, reinforced with geometry

"Self-supervised VGGT" with hard geometric constraints
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Beware of artificial evaluations!

1. Take nice, slow videos with a lot of parallax
2. Then extract images at regular interval

level of overlap 38



Much of real data is very different

« Example: egoentric data from wearable devices
» Opportunistic capture, byproduct of the user's motion
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« Unconstrained motion, moving environments |
« Appearance: low light / exposure changes
 Long up-time — time-varying calibration
But

Challenges & opportunities

Non-image sensors: IMU, GPS, microphones, WiFi/BT
High-frequency (>60 FPS)

Dense coverage (crowd-sourced) GB Bluetooth
inertial — -
@ units > WiF]
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Benchmarking Egocentric
ity Scale
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The LaMAria dataset

/0km
22 hours
10-45min each

Good for
multi-sensor
SLAM and
monocular StM



The LaMAria dataset

Control points with cm accuracy

% metric scale drift

Measure 0.1




Monocular SLAM only works on easier data

handheld egocentric
increasingly natural

motion patterns
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Open-source systems are far behind industry

short medium long low-light
NG L AA
& AN ® 4
x x | %% Aadex .

OpenVINS ¢  OpenVINS+Maplab e ORB-SLAMS3 e
Kimera VIO e Aria’s SLAM e 47



Open-source systems are far behind industry

e monocular inertial
« multi-camera inertial

short medium long challenge — low-light challenge — moving platform
method causal © c c <
score T CP@Im7T R@5m7 scoret CP@ImT R@5m* scoreT CP@Im1T R@5m*1 score T CP@Im1T R@5m+T score T CP@ImT R@5m+*
DPVO v 9.4 1.7 21.3 5.2 1.0 10.8 1.2 0.0 1.9 34 0.2 7.5 2.4 0.1 -
DPV-SLAM v 7.2 1.4 14.5 5.2 1.4 10.0 0.4 0.0 0.6 1.9 04 3.5 1.7 0.0 -
Kimera VIO v 6.3 2.9 12.6 6.6 1.7 15.1 6.3 1.7 14.3 4.2 2.7 6.4 7.1 1.6 -
ORB-SLAM3 X 28.3 13.4 67.1 20.3 4.4 57.0 14.2 2.3 40.6 6.2 0.6 12.5 15.7 4.1 -
OpenVINS v 18.1 4.4 45.7 10.9 2.3 27.9 4.7 0.5 12.3 7.9 2.4 17.6 2.4 0.6 -
OpenVINS + Maplab X 22.9 8.1 50.8 13.1 4.1 29.0 5.8 1.3 13.3 9.6 2.9 19.3 3.7 1.2 -
OpenVINS v 22.2 6.2 57.9 17.8 5.7 46.1 10.6 1.7 25.8 16.9 6.2 38.2 11.5 2.4 -
OpenVINS + Maplab  x 26.0 9.5 61.1 21.3 7.3 50.6 12.6 1.9 30.3 16.5 4.6 37.9 13.0 3.0 -
OKVIS2 v 24.3 12.0 54.8 13.6 6.8 28.2 2.3 2.5 1.7 154 53 38.6 4.1 2.8 -
Aria’s SLAM X 90.7 99.2 - 78.5 87.4 - 70.8 75.9 - 84.2 91.6 - 53.6 51.2 -

Aria's MPS SLAM (close-sourced) is far ahead of all current academic solutions.



Moving the goalpost for pose Transformers

» How to maintain scale consistency over million of frames?
* Efficient joint inference over multiple sequences?

* How to use sensors like IMU in e2e models?
« Ubiguitous symmetry indoors

» GT is orders of magnitude more accurate

» Plenty of extra sequences for SSL




Conclusion

* Yes, e2e models are impressive!
« But e2e is not a requirement to leverage 3D priors

* And e2e is sometimes a liability — e.g. sensor fusion is harder

« Open guestion

How to retain the benefits of geometry
while learning even higher-level priors e2e?
accurate, scalable, interpretable, flexible w.r.t. sensors
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Thank you!

psarlin.com
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