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Do we still need geometry
for Visual Localization and Mapping?



Visual Localization and Mapping
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Finding where I am

6-DoF pose

Meta Aria

??
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Visual Localization and Mapping

What is in the world and where

Google Google

Google

Google

Or SF

Muni
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Creating maps from observations

mapping localization

needs a map

needs the sensor pose

Google
ASL, ETH Zurich

Visual Localization and Mapping



Why should we care?
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GoogleGoogle

Microsoft

Niantic Sevensense



3D Geometry for Mapping
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mapping images



3D Geometry for Mapping
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3D point cloud



3D Geometry for Localization
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query image

3D point cloud

Google



Real-world challenges
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Torsten Sattler

temporal
changes

Google StreetView

cost & scalability
symmetries

Torsten Sattler



Do we still need geometry
for Visual Localization and Mapping?
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SfM in 2019

Deep Learning

Deep Learning

Deep Learning

More Deep Learning

Image Matching Workshop



We now have end-to-end learning that works
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2016 2023 2025

DUSt3R VGGTPoseNet

But what did we lose?

fast, robust, generalizes



From Geometry to Deep Learning?
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mapping 
images

black box
deep learning

none of the above! limited to <<1k views

3D map

camera poses

3D geometry

 
vs

accurate, scalable, interpretable



From Geometry to Deep Learning?
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mapping 
images

black box
deep learning

Do we have to choose one?

3D map

camera poses

3D geometry

 



One step at a time
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image matching pose estimation bundle adjustment

SuperGlue [CVPR’20]
LightGlue [ICCV’23]

PixLoc [CVPR’21]

PixSfM [ICCV’21]

calibration

GeoCalib
[ECCV’24]



A simple recipe

1. Identify structural weaknesses in geometry

• unconstrained? unobservable? noisy inputs?

2. Think ML: what priors do we need? Inferred from what data?

3. What geometry shouldn’t be learned? Camera models!

4. Bake it into an optimization problem with learned data terms

• Learned priors as data terms

• Flexible constraints

• Predictive uncertainty
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Example: three-view overlap
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unconstrained relative scales

2 disjoint
reconstructions



Example: three-view overlap
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Monocular surface priors
depth & normals



Example: three-view overlap
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MP-SfM
Monocular Surface Priors 

for Robust Structure-from-Motion

Zador 
Pataki1

Paul-Edouard
Sarlin2

Johannes 
Schönberger1,3

Marc 
Pollefeys1,3

1 2 3

CVPR 2025

github.com/cvg/mpsfm



estimated 
vs ground-truth 
camera poses

3 view overlap
2 view overlap
1 view overlap

Common scenario
for non-expert users



How it works
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images

monocular 
depth & normals

sparse or dense 
correspondences 3D lifting refinement

multi-view 
triangulation

single-view lifting

depth-constrained
bundle adjustment

depth refinement



Single-view lifting with depth
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Complement regular multi-view 3D points
with single-view tracks from depth



Bundle adjustment with priors

• Naïve: constrain the depth of 3D points

• But: monocular depth is rarely accurate!

• Surface normals are easier to predict
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mono 
vs GT depth



Depth refinement as normal integration

• Constrain 3D points that are on the same surface

• Optimize a dense depth map with NLS

• Estimate the depth discontinuity with IRLS
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Bilateral Normal Integration, Cao et al., ECCV 2022



Depth refinement as normal integration
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depth-constrained
bundle adjustment

depth refinement

freeze 
dense depth

point-to-point constraints 
break the Schur Complement

p
o

in
ts

Solution: alternate optimization

freeze 
camera poses 
and 3D points

c
a

m
e

ra
s



Joint optimization requires 
calibrated uncertainties
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Symmetry detection with depth consistency
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consistent occlusion conflict

vanilla / with Doppelganger / with depth

relative pose error [deg]

low-overlap                     high-overlap
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So… do we still need geometry?

• Two/multi-view models learn strong 3D priors

• But we already have this from off-the-shelf models

• Use geometry to glue them together!

• Open question: can we learn depth/normals end-to-end in SfM?

• Grand vision: a self-tuning system, reinforced with geometry

“Self-supervised VGGT” with hard geometric constraints
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YES!



Beware of artificial evaluations!

38level of overlap

1. Take nice, slow videos with a lot of parallax

2. Then extract images at regular interval



Much of real data is very different
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• Example: egoentric data from wearable devices

• Opportunistic capture, byproduct of the user’s motion



• Unconstrained motion, moving environments

• Appearance: low light / exposure changes

• Long up-time → time-varying calibration

But

• Non-image sensors: IMU, GPS, microphones, WiFi/BT

• High-frequency (>60 FPS)

• Dense coverage (crowd-sourced)

GPS

Challenges & opportunities
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inertial
units WiFi

Bluetooth



Benchmarking Egocentric 
Visual-Inertial SLAM at City Scale

lamaria.ethz.ch



The LaMAria dataset
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70km
22 hours
10-45min each

Good for 
multi-sensor 
SLAM and
monocular SfM



The LaMAria dataset
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Control points with cm accuracy
Measure 0.1% metric scale drift



Monocular SLAM only works on easier data
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handheld
increasingly natural 

motion patterns

egocentric



Open-source systems are far behind industry
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OpenVINS • OpenVINS+Maplab • ORB-SLAM3 • OKVIS2 • 
Kimera VIO • DPVO • DPV-SLAM • Aria’s SLAM •



Open-source systems are far behind industry

Aria's MPS SLAM (close-sourced) is far ahead of all current academic solutions.

• monocular
• monocular inertial
• multi-camera inertial



Moving the goalpost for pose Transformers

• How to maintain scale consistency over million of frames?

• Efficient joint inference over multiple sequences?

• How to use sensors like IMU in e2e models?

• Ubiquitous symmetry indoors

• GT is orders of magnitude more accurate

• Plenty of extra sequences for SSL
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Conclusion

• Yes, e2e models are impressive!

• But e2e is not a requirement to leverage 3D priors

• And e2e is sometimes a liability – e.g. sensor fusion is harder

• Open question

How to retain the benefits of geometry
while learning even higher-level priors e2e?

accurate, scalable, interpretable, flexible w.r.t. sensors
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Thank you!

53

psarlin.com
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