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Abstract Problem setup & contributions
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1. SuperGlue: Learning Feature Matching with Graph Neural Networks [CVPR"20]

with Daniel DeTone, Tomasz Malisiewicz, Andrew Rabinovich (Magic Leap)

Result robust wide- basellne matching

Contribution: a deep neural network for two-view image matching
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2. Pixel-Perfect Structure-from-Motion with Featuremetric Refinement [ICCV'21]

with Philipp Lindenberger, Viktor Larsson, Marc Pollefeys (ETH Zurich, Microsoft)
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3. Back to the Feature: Learning Robust Camera Localization from Pixels to Pose [CVPR21]
with A. Unagar, M. Larsson, H. Germain, C. Toft, V. Larsson, M. Pollefeys, V. Lepetit, L. Hammarstrand, . Kahl, T. Sattler ~ Learns temporal priors

Contribution: a deep neural network that learns generic camera pose estimation end-to-end — ignore dynamic objects
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