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6-DoF camera pose estimation

We tackle the task of visual localization, which estimates the rotation and the translation
of a camera in a 3D environment given a single query image.



6-DoF camera pose estimation

reference

We assume to have a map of the environment, composed of reference images with poses,
and a 3D model (e.g. sparse pointcloud built with Structure-from-Motion).



6-DoF camera pose estimation

reference

We often also have a coarse prior on the pose, obtained with image retrieval or even GPS.



6-DoF camera pose estimation

reference

The contribution of this work is PixLoc, a learning algorithm that estimates the pose of a given image. .



Currently: generalization or end-to-end

local feature matching
[detection ] [description] [ matching ] [ solver ]

pose
Scene agnhostic
. . Current approaches to this problem belong to two
GOOd generallzatlon categories. The classical pipeline detects local
|nterpretab|e features, describes and matches them, and finally
) _ solves for the pose. Multiple of these blocks can be
X Complex plpel ine learned, but training end-to-end is difficult.



Currently: generalization or end-to-end

local feature matching
[detection ] [description] [ matching ] [ solver ]

3D point regression || solver

Feature extraction

pose regression

pose

end-to-end localization

X Tralned fOF eaCh scene Instead, recent approaches like DSAC rely on a single

X Poor generalization convolutional neural network (CNN) to regress geometric
quantities like 3D points. The CNN recognizes specific
X BlaCkbOX scene features and predicts their 3D coordinates or the

Trained end-to-end corresponding viewpoint.
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Currently: generalization or end-to-end

local feature matching
[detection ] [description] [ matching ] [ solver ]

3D point regression || solver

Feature extraction

pose regression

pose

end-to-end localization

X Trained for each scene The weights of the CNN therefore encode the 3D

X Poor generalization structure of the reference views, and often cannot
generalize to new scenes.

X B|8CkbOX Some works instead regress poses relative to reference

Trained end-to-end images, which in theory is not bound to a specific scene,

but in practice still fails to generalize. 8



Currently: generalization or end-to-end

local feature matching
[detection ] [description] [ matching ] [ solver ]

Feature extraction

pose
end-to-end localization
| use classical
et 16l 8 goametry, nstoadt decp nots should g6 3D geometry!
Features, ant the 1ogression shoula b2 petformed with BRUK  rE

classical geometry. TTH% FEHT
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Our approach: PixLoc

\

Let’s have a closer look at PixLoc.
A CNN first predicts dense features for the query and for a corresponding reference image.
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Our approach: PixLoc

Given local 3D points and a coarse initial pose,
we can compute the error between query and reference features.
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Our approach: PixLoc
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Alignment

A geometric optimization then refines the pose by aligning the features.
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Our approach: PixLoc
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The optimization is differentiable so that PixLoc is trained end-to-end by backpropagating to the features.
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Our approach: PixLoc

Scene agnostic =
Generalizes well
I—> Feature |* Pose
Accurate ““t.“?k““;"‘: Alignment )
Interpretable 1 FER' <« Loss

Trained end-to-end By taking the 3D information out the network, the features are generic.
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Let’s visualize the process.
We isolate a local point cloud
with image retrieval.




And we initialize PixLoc with
one of the reference poses.
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The feature alignment then *:
iteratively refines the pose by

minimizing a direct featuremetnc 3’&' ﬁ ot
cost until convergence. ;

Here we show the final
reprojections in red, but PixLoc

o . . s : 5 .o, ‘3'
‘e ® . ..o i e ' & e :
does not rely on explicit - R RN
correspondences. '3



Multi-level optimization

coarse

feature
extractor

iz

| confidence ~ features

reference

For each image, PixLoc first extracts dense features and corresponding confidence maps
at multiple levels, from coarse to fine.

18



Multi-level optimization

coarse medium

residual
weights

LM
->

feature T

% residuals
A

alignment )]

feature
extractor

| confidence ~ features

reference

For each 3D point, the features define a cost that is weighted by the confidence
and minimized using gradient-based optimization.
PixLoc also encodes a regularization A that reflects the prior on the camera motion.
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Multi-level optimization

coarse

feature
extractor

feature

% residuals
A

alignment )]

| confidence ~ features

reference

We obtain an updated pose, which initializes the optimization at the next level, and so on.
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Multi-level optimization

3D ° °
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reference
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feature
extractor
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PixLoc is trained by supervising only the final poses, and thus does not require ground truth 3D geometry.
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Multi-level optimization
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Level 1

The confidence learns to
ignore dynamic objects
like cars and to focus on
distinctive parts like treetops.
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Multi-level optimization
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feature
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loss

reference

Level 3

\ Confidence
| |

It can also ignore self-
similarities that create local
minima in the optimization,

such as the brick wall

shown here.

ignored .



Large & rObUS't Convergence N Direct alignment usually cannot

handle large viewpoint or

illumination changes.
Differently, PixLoc has a large and
robust basin of convergence thanks
to the multilevel features.
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Domain & scene generalization ;... -
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By learning only generic visual features, PixLoc generalizes well across environments. e
A model trained only on outdoor scenes works well with indoor data that has less texture and more motion blur.



:E“’E-;‘HT;;K" psarlin.com/pixloc

learn temporal priors
Pleoc end to end pose esUmatlon from pose supervision only!
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https://psarlin.com/pixloc

