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Figure 14: More indoor examples. We show both Difficult and Very Difficult ScanNet indoor examples for which Super-
Glue works well, and three Too Difficult examples where it fails, either due to unlikely motion or lack of repeatable keypoints
(last two rows). Correct matches are green lines and mismatches are red lines. See details in Section 5.2.
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3. Interpretable2. Graph Neural Network + Optimal Transport
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1. A Learnable Middle-end

4. Results: State-of-the-art Relative Pose Estimation

• Inputs: two sets of local features - keypoints & local descriptors
• Output: strong & outlier-free matches
• Applications: SLAM, SfM, visual localization

Our problem:

• Combine deep learning with classical optimization
→ Graph Neural Networks, Attention, Optimal Transport

• Robust: handles extreme wide-baseline image pairs

• Real-time: 15 FPS on GPU, scales to 1000s of keypoints

• SOTA matching for indoor+outdoor with SIFT & SuperPoint

• Interpretable: learn complex reasoning & priors about the world

• Reasons about the two sets with
self-attention & cross-attention

• Encodes contextual cues & priors
into matching descriptors

• Uses both keypoint position & appearance

• Solve an optimization problem differentiably

• Enforces the assignment constraints

•Handles occlusion elegantly with dustbins

Trained end-to-end from ground truth matches = a soft, data-dependent, sparse graph
to better understand feature matching

nearest neighbor
+ heuristics

SuperGlue
(ours)

AUC@20° rotation+translation error
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Figure 14: More indoor examples. We show both Difficult and Very Difficult ScanNet indoor examples for which Super-
Glue works well, and three Too Difficult examples where it fails, either due to unlikely motion or lack of repeatable keypoints
(last two rows). Correct matches are green lines and mismatches are red lines. See details in Section 5.2.
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indoor: ScanNet (RGBD)

outdoor: phototourism SfM

SuperPoint + NN + distance SuperPoint + NN + OANet SuperPoint + SuperGlue

Figure 15: More outdoor examples. We show results on the MegaDepth validation and the PhotoTourism test sets. Correct
matches are green lines and mismatches are red lines. The last row shows a failure case, where SuperGlue focuses on the
incorrect self-similarity. See details in Section 5.3.
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• SuperGlue > classifiers > heuristics
• SuperPoint + SuperGlue > all
• Generalizes well for SfM, localizationnearest neighbor

+ classifier
nearest neighbor

+ heuristics
SuperGlue

(ours)
nearest neighbor

+ classifier


